A CONSISTENT SOLUTION OF THE HORN TARSKI PROBLEM

Egbert Thümmel

40th Winter School of Abstract Analysis – Section Topology, Hejnice, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

FRAGMENTATION PROPERTIES

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- P is an ordered set.
- σ -finite cc; there is a fragmentation

$$P = \bigcup_{n \in \omega} P_r$$

such that there are only finitely many disjoint elements in each P_n .

• *σ*-bounded cc; there is a fragmentation

$$P=\bigcup_{n\in\omega}P_n$$

such that there are only *n* disjoint elements in each *P_n*.

FRAGMENTATION PROPERTIES

- P is an ordered set.
- σ -finite cc; there is a fragmentation

$$P = \bigcup_{n \in \omega} P_n$$

such that there are only finitely many disjoint elements in each P_n .

• *σ*-bounded cc; there is a fragmentation

$$P = \bigcup_{n \in \omega} P_n$$

such that there are only *n* disjoint elements in each P_n .

FRAGMENTATION PROPERTIES

- P is an ordered set.
- σ -finite cc; there is a fragmentation

$$P = \bigcup_{n \in \omega} P_n$$

such that there are only finitely many disjoint elements in each P_n .

• σ -bounded cc; there is a fragmentation

$$P=\bigcup_{n\in\omega}P_n$$

such that there are only *n* disjoint elements in each P_n .

 A Boolean algebra carries a strictly positive measure μ if for any a ∩ b = 0

$$\mu(\mathsf{a} \lor \mathsf{b}) = \mu(\mathsf{a}) + \mu(\mathsf{b})$$

and

$$\mu(a) = 0$$
 iff $a = \mathbf{0}$.

• Fact: Any Boolean algebra carrying a strictly positive measure is *σ*-bounded cc.

• Witness: $P_n = \{a : \mu(a) > 1/n\}.$

 A Boolean algebra carries a strictly positive measure μ if for any a ∩ b = 0

$$\mu(a \lor b) = \mu(a) + \mu(b)$$

and

$$\mu(a) = 0$$
 iff $a = \mathbf{0}$.

• Fact: Any Boolean algebra carrying a strictly positive measure is *σ*-bounded cc.

• Witness: $P_n = \{a : \mu(a) > 1/n\}.$

I

 A Boolean algebra carries a strictly positive measure μ if for any a ∩ b = 0

$$\mu(\mathsf{a} \lor \mathsf{b}) = \mu(\mathsf{a}) + \mu(\mathsf{b})$$

and

$$\mu(a) = 0$$
 iff $a = 0$.

- Fact: Any Boolean algebra carrying a strictly positive measure is *σ*-bounded cc.
- Witness: $P_n = \{a : \mu(a) > 1/n\}.$

SUBMEASURE AND FRAGMENTATION PROPERTIES

 A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$\mu(\mathsf{a} \lor \mathsf{b}) \leq \mu(\mathsf{a}) + \mu(\mathsf{b})$$

and for each disjoint sequence $\langle a_n : n \in \omega \rangle \in B^{\omega}$, $\lim_{n\to\infty} \mu(a_n) = 0$ and

$$\mu(a) = 0$$
 iff $a = 0$.

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is *σ*-finite cc.
- Witness: $P_n = \{a : \mu(a) > 1/n\}.$

SUBMEASURE AND FRAGMENTATION PROPERTIES

 A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$\mu(a \lor b) \le \mu(a) + \mu(b)$$

and for each disjoint sequence $\langle a_n : n \in \omega \rangle \in B^{\omega}$, $\lim_{n\to\infty} \mu(a_n) = 0$ and

$$\mu(a) = 0$$
 iff $a = 0$.

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is σ-finite cc.
- Witness: $P_n = \{a : \mu(a) > 1/n\}.$

SUBMEASURE AND FRAGMENTATION PROPERTIES

 A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$\mu(a \lor b) \le \mu(a) + \mu(b)$$

and for each disjoint sequence $\langle a_n : n \in \omega \rangle \in B^{\omega}$, $\lim_{n \to \infty} \mu(a_n) = 0$ and

$$\mu(a) = 0$$
 iff $a = 0$.

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is σ-finite cc.
- Witness: $P_n = \{a : \mu(a) > 1/n\}.$

The problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A. Horn and A Tarski 1948 Does there exist an ordering which is σ -finite cc but not σ -bounded cc?
- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A. Horn and A Tarski 1948 Does there exist an ordering which is σ -finite cc but not σ -bounded cc?
- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A. Horn and A Tarski 1948 Does there exist an ordering which is σ -finite cc but not σ -bounded cc?
- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For a topological Hausdorff space X, let the Todorcevic ordering be

$$\mathbb{T}(X) = \{F \subseteq X : F \text{ is compact} \quad \& \quad |F^d| < \omega\}$$

where $F_1 \leq F_2$ if $F_1 \supseteq F_2$ and $F_1^d \cap F_2 = F_2^d$.

• (S, \leq_S) Suslin tree

- $s \sim t$ iff $\forall r \in S : r <_S s \leftrightarrow r <_S t$
- every equivalence class of $\sim: \ \preceq$ ordering of type ω^*
- lexicographical order ≤ on S by s < t if either s <_S t or s ∉_S t and there are s' ≤_S s and t' ≤_S t such that s' ~ t' and s' ≺ t'
- the interval topology au_{\leq} on (S,\leq)

THE SPECKER ORDERING

• (S, \leq_S) Suslin tree

- $s \sim t$ iff $\forall r \in S : r <_S s \leftrightarrow r <_S t$
- every equivalence class of $\sim: \ \preceq$ ordering of type ω^*
- lexicographical order ≤ on S by s < t if either s <_S t or s ∉_S t and there are s' ≤_S s and t' ≤_S t such that s' ~ t' and s' ≺ t'
- the interval topology au_{\leq} on (S,\leq)

- (S, \leq_S) Suslin tree
- $s \sim t$ iff $\forall r \in S : r <_S s \leftrightarrow r <_S t$
- every equivalence class of $\sim: \ \preceq$ ordering of type ω^*
- lexicographical order \leq on S by s < t if either $s <_S t$ or $s \not\leq_S t$ and there are $s' \leq_S s$ and $t' \leq_S t$ such that $s' \sim t'$ and $s' \prec t'$
- the interval topology au_{\leq} on (S,\leq)

- (S, \leq_S) Suslin tree
- $s \sim t$ iff $\forall r \in S : r <_S s \leftrightarrow r <_S t$
- every equivalence class of $\sim: \ \preceq$ ordering of type ω^*
- lexicographical order \leq on S by s < t if either $s <_S t$ or $s \nleq_S t$ and there are $s' \leq_S s$ and $t' \leq_S t$ such that $s' \sim t'$ and $s' \prec t'$
- the interval topology au_{\leq} on (S,\leq)

- (S, \leq_S) Suslin tree
- $s \sim t$ iff $\forall r \in S : r <_S s \leftrightarrow r <_S t$
- every equivalence class of $\sim: \ \preceq$ ordering of type ω^*
- lexicographical order \leq on S by s < t if either $s <_S t$ or $s \not\leq_S t$ and there are $s' \leq_S s$ and $t' \leq_S t$ such that $s' \sim t'$ and $s' \prec t'$
- the interval topology au_{\leq} on (S,\leq)

The result

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• The ordering $\mathbb{T}(S, \tau_{\leq})$ is is σ -finite cc but not σ -bounded cc.

• \mathcal{P} is not σ -bounded cc.

- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• \mathcal{P} is not σ -bounded cc.

- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

• \mathcal{P} is not σ -bounded cc.

- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

• \mathcal{P} is not σ -bounded cc.

- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- \mathcal{P} is not σ -bounded cc.
- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set
 P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- \mathcal{P} is not σ -bounded cc.
- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set
 P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- \mathcal{P} is not σ -bounded cc.
- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set
 P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- \mathcal{P} is not σ -bounded cc.
- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set
 P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- \mathcal{P} is not σ -bounded cc.
- notation: For any s ∈ S choose in the ordering ≤ increasing l(s, k) and decreasing r(s, k) for k < ω such that sup{l(s, k) : k < ω} = s = inf{r(s, k) : k < ω}
- by contradiction: $\mathcal{P} = \bigcup_{n \in \omega} P_n$ such that there are at most *n* pairwise disjoint elements in P_n
- define f_n: S → n + 1, such that f_n(s) is the maximal length of an antichain which is a subset of the set
 P_n(s) = {F ∈ P_n : ∃t ∈ F^d(t ≥_S s)}
- f_n decreasing with respect to \leq_S
- for any $s \in S$ there is an $s' \ge_S s$ such that $f_n(s') = f_n(t)$ for all $t \ge_S s'$
- S Suslin $\rightarrow \exists s \in S \ (f_n(s) = f_n(t) \text{ for all } t \geq_S s \text{ and all } n < \omega)$
- $f(n) = f_n(s)$

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- *F* is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- *F* is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- *F* is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

- for $n < \omega$ choose in $P_n(r(s, n))$ an antichain $\{F_{n,i}\}_{i < f(n)}$ and $s_{n,i} \ge_S r(s, n)$ such that $s_{n,i} \in (F_{n,i})^d$ for $n < \omega$ and i < f(n)
- $\{s_{n,i}\}_{n < \omega, i < f(n)}$ converges to s (if not finite)
- $F = \{s_{n,i}\}_{n < \omega, i < f(n)} \cup \{r(s,n)\}_{n < \omega} \cup \{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n,i}$ for $n < \omega$ and i < f(n)
- F has to be contained in some P_n
- $f_n(s) \ge f(n) + 1$, a contradiction

$\mathcal P$ is σ -finite CC

• \mathcal{P} is σ -finite cc.

- choose in the ordering ≤ increasing *l*(*s*, *k*) and decreasing *r*(*s*, *k*) for *k* < ω such that sup{*l*(*s*, *k*) : *k* < ω} = *s* = inf{*r*(*s*, *k*) : *k* < ω}
- put *l*(*s*, *k*) = (*l*(*s*, *k*), *r*(*s*, *k*)), the open interval with respect to the ordering ≤
- for any F ∈ P fix a k(F) < ω such that the l(s, k(F)) are mutually disjoint for s ∈ F^d
- F = ∪ {I(s, k(F)) ∩ F : s ∈ F^d} ∪ R(F), where
 I(s, k(F)) ∩ F is a converging sequence with limit s and R(F) is a finite set of isolated points

• \mathcal{P} is σ -finite cc.

- choose in the ordering ≤ increasing *l*(*s*, *k*) and decreasing *r*(*s*, *k*) for *k* < ω such that sup{*l*(*s*, *k*) : *k* < ω} = *s* = inf{*r*(*s*, *k*) : *k* < ω}
- put *l*(*s*, *k*) = (*l*(*s*, *k*), *r*(*s*, *k*)), the open interval with respect to the ordering ≤
- for any F ∈ P fix a k(F) < ω such that the l(s, k(F)) are mutually disjoint for s ∈ F^d
- F = ∪{I(s, k(F)) ∩ F : s ∈ F^d} ∪ R(F), where
 I(s, k(F)) ∩ F is a converging sequence with limit s and R(F) is a finite set of isolated points

${\cal P}$ is σ -finite CC

- \mathcal{P} is σ -finite cc.
- choose in the ordering ≤ increasing *l*(*s*, *k*) and decreasing *r*(*s*, *k*) for *k* < ω such that sup{*l*(*s*, *k*) : *k* < ω} = *s* = inf{*r*(*s*, *k*) : *k* < ω}
- put *I*(*s*, *k*) = (*I*(*s*, *k*), *r*(*s*, *k*)), the open interval with respect to the ordering ≤
- for any F ∈ P fix a k(F) < ω such that the l(s, k(F)) are mutually disjoint for s ∈ F^d
- F = ∪{I(s, k(F)) ∩ F : s ∈ F^d} ∪ R(F), where
 I(s, k(F)) ∩ F is a converging sequence with limit s and R(F) is a finite set of isolated points

${\cal P}$ is σ -finite CC

- \mathcal{P} is σ -finite cc.
- choose in the ordering ≤ increasing *l*(*s*, *k*) and decreasing *r*(*s*, *k*) for *k* < ω such that sup{*l*(*s*, *k*) : *k* < ω} = *s* = inf{*r*(*s*, *k*) : *k* < ω}
- put *I*(*s*, *k*) = (*I*(*s*, *k*), *r*(*s*, *k*)), the open interval with respect to the ordering ≤
- for any F ∈ P fix a k(F) < ω such that the I(s, k(F)) are mutually disjoint for s ∈ F^d
- F = ∪{I(s, k(F)) ∩ F : s ∈ F^d} ∪ R(F), where
 I(s, k(F)) ∩ F is a converging sequence with limit s and R(F) is a finite set of isolated points

${\cal P}$ is σ -finite CC

- \mathcal{P} is σ -finite cc.
- choose in the ordering ≤ increasing *l*(*s*, *k*) and decreasing *r*(*s*, *k*) for *k* < ω such that sup{*l*(*s*, *k*) : *k* < ω} = *s* = inf{*r*(*s*, *k*) : *k* < ω}
- put *I*(*s*, *k*) = (*I*(*s*, *k*), *r*(*s*, *k*)), the open interval with respect to the ordering ≤
- for any F ∈ P fix a k(F) < ω such that the I(s, k(F)) are mutually disjoint for s ∈ F^d
- $F = \bigcup \{I(s, k(F)) \cap F : s \in F^d\} \cup R(F)$, where $I(s, k(F)) \cap F$ is a converging sequence with limit s and R(F) is a finite set of isolated points

• $P_{k,n,m} = \{F \in \mathcal{P} : k(F) = k \& |F^d| = n \& |R(F)| = m\}$

- $\mathcal{P} = \bigcup_{k,n,m < \omega} P_{k,n,m}$
- all $P_{k,n,m}$ are finite-cc:
- by contradiction: A = {F_i}_{i<ω} ⊂ P_{k,n,m} is an infinite antichain for some fixed k, n, m

- $P_{k,n,m} = \{F \in \mathcal{P} : k(F) = k \& |F^d| = n \& |R(F)| = m\}$
- $\mathcal{P} = \bigcup_{k,n,m < \omega} P_{k,n,m}$
- all $P_{k,n,m}$ are finite-cc:
- by contradiction: A = {F_i}_{i<ω} ⊂ P_{k,n,m} is an infinite antichain for some fixed k, n, m

- $P_{k,n,m} = \{F \in \mathcal{P} : k(F) = k \& |F^d| = n \& |R(F)| = m\}$
- $\mathcal{P} = \bigcup_{k,n,m < \omega} P_{k,n,m}$
- all $P_{k,n,m}$ are finite-cc:
- by contradiction: A = {F_i}_{i<ω} ⊂ P_{k,n,m} is an infinite antichain for some fixed k, n, m

- $P_{k,n,m} = \{F \in \mathcal{P} : k(F) = k \& |F^d| = n \& |R(F)| = m\}$
- $\mathcal{P} = \bigcup_{k,n,m < \omega} P_{k,n,m}$
- all $P_{k,n,m}$ are finite-cc:
- by contradiction: A = {F_i}_{i<ω} ⊂ P_{k,n,m} is an infinite antichain for some fixed k, n, m

- Let $(F_i)^d = \{s_i^n\}_{n < \bar{n}}$ and $R(F_i) = \{r_i^m\}_{m < \bar{m}}$ be increasingly enumerated and put $F_i^n = F \cap I(s_i^n, \bar{k}) \setminus \{s_i^n\}$.
- $F_i \setminus (F_i)^d = \bigcup_{n < \bar{n}} F_i^n \cup \{r_i^m\}_{m < \bar{m}}$ is the set of isolated points of F_i
- wlog $n < \bar{n}$ either all s_i^{n} 's are equal or are pairwise different
- for any $m < \bar{m}$ either all $r_i^{m'}$ s are equal or are pairwise different

- Let $(F_i)^d = \{s_i^n\}_{n < \bar{n}}$ and $R(F_i) = \{r_i^m\}_{m < \bar{m}}$ be increasingly enumerated and put $F_i^n = F \cap I(s_i^n, \bar{k}) \setminus \{s_i^n\}$.
- $F_i \setminus (F_i)^d = \bigcup_{n < \bar{n}} F_i^n \cup \{r_i^m\}_{m < \bar{m}}$ is the set of isolated points of F_i
- wlog $n < \bar{n}$ either all s_i^{n} 's are equal or are pairwise different
- for any $m < \bar{m}$ either all $r_i^{m'}$ s are equal or are pairwise different

- Let $(F_i)^d = \{s_i^n\}_{n < \bar{n}}$ and $R(F_i) = \{r_i^m\}_{m < \bar{m}}$ be increasingly enumerated and put $F_i^n = F \cap I(s_i^n, \bar{k}) \setminus \{s_i^n\}$.
- $F_i \setminus (F_i)^d = \bigcup_{n < \bar{n}} F_i^n \cup \{r_i^m\}_{m < \bar{m}}$ is the set of isolated points of F_i
- wlog $n < \bar{n}$ either all s_i^n 's are equal or are pairwise different
- for any $m < \bar{m}$ either all $r_i^{m'}$ s are equal or are pairwise different

- Let $(F_i)^d = \{s_i^n\}_{n < \bar{n}}$ and $R(F_i) = \{r_i^m\}_{m < \bar{m}}$ be increasingly enumerated and put $F_i^n = F \cap I(s_i^n, \bar{k}) \setminus \{s_i^n\}$.
- $F_i \setminus (F_i)^d = \bigcup_{n < \bar{n}} F_i^n \cup \{r_i^m\}_{m < \bar{m}}$ is the set of isolated points of F_i
- wlog $n < \bar{n}$ either all s_i^n 's are equal or are pairwise different
- for any $m < \bar{m}$ either all $r_i^{m'}$ s are equal or are pairwise different

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We say that $\{i, j\} \in [\omega]^2$, i < j, has colour

$$\begin{array}{ll} (1, n, n', l) & \text{if } s_i^n \in F_j^{n'} \& s_i^n < s_j^{n'} \\ (1, n, n', r) & \text{if } s_i^n \in F_j^{n'} \& s_i^n > s_j^{n'} \\ (2, n, m) & \text{if } s_i^n = r_j^m \\ (3, n, n') & \text{if } s_j^n \in F_i^{n'} \\ (4, n, m) & \text{if } s_j^n = r_i^m \end{array}$$

for $n, n' < \bar{n}$ and $m < \bar{m}$.

- for any {i, j} ∈ [ω]² there is a point which is isolated in F_i and not isolated in F_j or vice versa
- any pair {i, j} obtains at least one colour
- Ramsey's theorem: $\mathcal{A}' \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- for any {i, j} ∈ [ω]² there is a point which is isolated in F_i and not isolated in F_j or vice versa
- any pair {i, j} obtains at least one colour
- Ramsey's theorem: $\mathcal{A}' \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- for any {i, j} ∈ [ω]² there is a point which is isolated in F_i and not isolated in F_j or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}' \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- for any {i, j} ∈ [ω]² there is a point which is isolated in F_i and not isolated in F_j or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}'\subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- Assuming Martin's axiom, the above constructed example for an Aronshajn tree is even σ -bounded cc.
- Is it true that under this assumption the notions σ -bounded cc and σ -finite cc coinside?

Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Assuming Martin's axiom, the above constructed example for an Aronshajn tree is even σ -bounded cc.
- Is it true that under this assumption the notions σ -bounded cc and σ -finite cc coinside?

B. Balcar, T. Pazák and E.Thümmel On Todorcevic orderings *in preparation.*

Horn, A. and Tarski, A.

Measures in Boolean algebras Trans. Amer. Math. Soc., 64:467–497, 1948.

S. Todorčević

Two examples of Borel partially ordered sets with the countable chain condition

Proc.Amer.Math.Soc., 112(4):1125-1128, 1991.