A consistent solution of the Horn TARSKI PROBLEM

Egbert Thümmel

$40^{\text {th }}$ Winter School of Abstract Analysis - Section Topology, Hejnice, 2012

Fragmentation properties

- P is an ordered set.
- σ-finite cc; there is a fragmentation

such that there are only finitely many disjoint elements in each P_{n}.
- σ-bounded cc; there is a fragmentation

such that there are only n disjoint elements in each P_{n}.

FRAGMENTATION PROPERTIES

- P is an ordered set.
- σ-finite cc; there is a fragmentation

$$
P=\bigcup_{n \in \omega} P_{n}
$$

such that there are only finitely many disjoint elements in each P_{n}.
such that there are only n disjoint elements in each P_{n}.

FRAGMENTATION PROPERTIES

- P is an ordered set.
- σ-finite cc; there is a fragmentation

$$
P=\bigcup_{n \in \omega} P_{n}
$$

such that there are only finitely many disjoint elements in each P_{n}.

- σ-bounded cc; there is a fragmentation

$$
P=\bigcup_{n \in \omega} P_{n}
$$

such that there are only n disjoint elements in each P_{n}.

Measure and fragmentation properties

- A Boolean algebra carries a strictly positive measure μ if for any $a \cap b=0$

$$
\mu(a \vee b)=\mu(a)+\mu(b)
$$

and

$$
\mu(a)=0 \text { iff } a=\mathbf{0} .
$$

- Fact: Any Boolean algebra carrying a strictly positive measure is σ-bounded cc.
- Witness: $P_{n}=\{a: \mu(a)>1 / n\}$

Measure and fragmentation properties

- A Boolean algebra carries a strictly positive measure μ if for any $a \cap b=0$

$$
\mu(a \vee b)=\mu(a)+\mu(b)
$$

and

$$
\mu(a)=0 \text { iff } a=\mathbf{0} .
$$

- Fact: Any Boolean algebra carrying a strictly positive measure is σ-bounded cc.
- Witness: $P_{n}=\{a: \mu(a)>1 / n\}$

Measure and fragmentation properties

- A Boolean algebra carries a strictly positive measure μ if for any $a \cap b=0$

$$
\mu(a \vee b)=\mu(a)+\mu(b)
$$

and

$$
\mu(a)=0 \text { iff } a=\mathbf{0} .
$$

- Fact: Any Boolean algebra carrying a strictly positive measure is σ-bounded cc.
- Witness: $P_{n}=\{a: \mu(a)>1 / n\}$.

Submeasure and fragmentation properties

- A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$
\mu(a \vee b) \leq \mu(a)+\mu(b)
$$

and for each disjoint sequence $\left\langle a_{n}: n \in \omega\right\rangle \in B^{\omega}$, $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=0$ and

$$
\mu(a)=0 \text { iff } a=\mathbf{0} .
$$

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is σ-finite cc.
- Witness: $P_{n}=\{a: \mu(a)>1 / n\}$

Submeasure and fragmentation properties

- A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$
\mu(a \vee b) \leq \mu(a)+\mu(b)
$$

and for each disjoint sequence $\left\langle a_{n}: n \in \omega\right\rangle \in B^{\omega}$, $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=0$ and

$$
\mu(a)=0 \text { iff } a=\mathbf{0}
$$

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is σ-finite cc.

Submeasure and fragmentation properties

- A Boolean algebra carries a strictly positive exhaustive submeasure μ if μ is monotone and for any a, b

$$
\mu(a \vee b) \leq \mu(a)+\mu(b)
$$

and for each disjoint sequence $\left\langle a_{n}: n \in \omega\right\rangle \in B^{\omega}$, $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=0$ and

$$
\mu(a)=0 \text { iff } a=\mathbf{0}
$$

- Fact: Any Boolean algebra carrying a strictly positive exhaustive submeasure is σ-finite cc.
- Witness: $P_{n}=\{a: \mu(a)>1 / n\}$.

The problem

- A. Horn and A Tarski 1948

Does there exist an ordering which is σ-finite cc but not σ-bounded cc?

- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

The problem

- A. Horn and A Tarski 1948 Does there exist an ordering which is σ-finite cc but not σ-bounded cc?
- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

The Problem

- A. Horn and A Tarski 1948 Does there exist an ordering which is σ-finite cc but not σ-bounded cc?
- Answer: Consistently yes.
- (under the assumption of the existence of a Suslin tree)

Todorcevic ordering

- For a topological Hausdorff space X, let the Todorcevic ordering be

$$
\mathbb{T}(X)=\left\{F \subseteq X: F \text { is compact } \quad \& \quad\left|F^{d}\right|<\omega\right\}
$$

where $F_{1} \leq F_{2}$ if $F_{1} \supseteq F_{2}$ and $F_{1}^{d} \cap F_{2}=F_{2}^{d}$.

The Specker ordering

- $\left(S, \leq_{s}\right)$ Suslin tree
- $s \sim t$ iff $\forall r \in S: r<s s \leftrightarrow r<s t$
- every equivalence class of $\sim: \preceq$ ordering of type ω^{*}
- lexicographical order $<$ on S by $s<t$ if either $s<s t$ or $s \not \Sigma_{S} t$ and there are $s^{\prime} \leq_{S} s$ and $t^{\prime} \leq_{S} t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$
- the interval topology $\tau \leq$ on (S, \leq)

The Specker ordering

- $(S, \leq s)$ Suslin tree
- $s \sim t$ iff $\forall r \in S: r<s s \leftrightarrow r<s t$
- every equivalence class of $\sim: \preceq$ ordering of type ω^{*}
- lexicographical order \leq on S by $s<t$ if either $s<s t$ or $s \not \leq s t$ and there are $s^{\prime} \leq_{S} s$ and $t^{\prime} \leq_{S} t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$
- the interval topology τ_{\leq}on (S, \leq)

The Specker ordering

- $(S, \leq s)$ Suslin tree
- $s \sim t$ iff $\forall r \in S: r<s s \leftrightarrow r<s t$
- every equivalence class of \sim : \preceq ordering of type ω^{*}
- lexicographical order \leq on S by $s<t$ if either $s<s t$ or $s \not \leq s t$ and there are $s^{\prime} \leq s s$ and $t^{\prime} \leq_{S} t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$
- the interval topology τ_{\leq}on (S, \leq)

The Specker ordering

- $(S, \leq s)$ Suslin tree
- $s \sim t$ iff $\forall r \in S: r<s s \leftrightarrow r<s t$
- every equivalence class of \sim : \preceq ordering of type ω^{*}
- lexicographical order \leq on S by $s<t$ if either $s<s t$ or $s \not \not \leq s t$ and there are $s^{\prime} \leq_{s} s$ and $t^{\prime} \leq_{s} t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$
- the interval topology τ_{\leq}on (S, \leq)

The Specker ordering

- $(S, \leq s)$ Suslin tree
- $s \sim t$ iff $\forall r \in S: r<s s \leftrightarrow r<s t$
- every equivalence class of \sim : \preceq ordering of type ω^{*}
- lexicographical order \leq on S by $s<t$ if either $s<s t$ or $s \not \not \leq s t$ and there are $s^{\prime} \leq_{s} s$ and $t^{\prime} \leq_{s} t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$
- the interval topology τ_{\leq}on (S, \leq)

The Result

- The ordering $\mathbb{T}\left(S, \tau_{\leq}\right)$is is σ-finite cc but not σ-bounded cc.

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that
$\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set
$P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to $\leq s$
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq_{s} s^{\prime}$
- S Suslin $\rightarrow \exists s \in S\left(f_{n}(s)=f_{n}(t)\right.$ for all $t \geq s$ and all $\left.n<\omega\right)$
- $f(n)=f_{n}(s)$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to $\leq s$
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq s s^{\prime}$
- $f(n)=f_{n}(s)$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to $\leq s$
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq s s^{\prime}$
- $f(n)=f_{n}(s)$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
of an antichain which is a subset of the set
$P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to $\leq s$
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for - S Suslin $\rightarrow \exists s \in S\left(f_{n}(s)=f_{n}(t)\right.$ for all $t \geq s s$ and all $\left.n<\omega\right)$ - $f(n)=f_{n}(s)$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set
$P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to \leq_{s}

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.
- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set
$P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to \leq_{s}
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq_{s} s^{\prime}$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.

- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to $\leq s$
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq s s^{\prime}$
- S Suslin $\rightarrow \exists s \in S\left(f_{n}(s)=f_{n}(t)\right.$ for all $t \geq s s$ and all $\left.n<\omega\right)$

\mathcal{P} IS NOT σ-BOUNDED CC

- \mathcal{P} is not σ-bounded cc.

- notation: For any $s \in S$ choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- by contradiction: $\mathcal{P}=\bigcup_{n \in \omega} P_{n}$ such that there are at most n pairwise disjoint elements in P_{n}
- define $f_{n}: S \longrightarrow n+1$, such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \geq s s)\right\}$
- f_{n} decreasing with respect to \leq_{s}
- for any $s \in S$ there is an $s^{\prime} \geq s s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \geq s s^{\prime}$
- S Suslin $\rightarrow \exists s \in S\left(f_{n}(s)=f_{n}(t)\right.$ for all $t \geq s s$ and all $\left.n<\omega\right)$
- $f(n)=f_{n}(s)$

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq{ }_{s} r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- $F=\left\{s_{n, i}\right\}_{n<\omega, i<f(n)} \cup\{r(s, n)\}_{n<\omega} \cup\{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n, i}$ for $n<\omega$ and $i<f(n)$
- F has to be contained in some P_{n}
- $f_{n}(s) \geq f(n)+1$, a contradiction

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq{ }_{s} r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- F is orthogonal with all $F_{n, i}$ for $n<\omega$ and $i<f(n)$
- F has to be contained in some P_{n}
- $f_{n}(s) \geq f(n)+1$, a contradiction

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq s r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- $F=\left\{s_{n, i}\right\}_{n<\omega, i<f(n)} \cup\{r(s, n)\}_{n<\omega} \cup\{s\} \in \mathcal{P}$
- F has to be contained in some P_{n}
- $f_{n}(s) \geq f(n)+1$, a contradiction

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq s r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- $F=\left\{s_{n, i}\right\}_{n<\omega, i<f(n)} \cup\{r(s, n)\}_{n<\omega} \cup\{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n, i}$ for $n<\omega$ and $i<f(n)$
- $f_{n}(s) \geq f(n)+1$, a contradiction

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq s r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- $F=\left\{s_{n, i}\right\}_{n<\omega, i<f(n)} \cup\{r(s, n)\}_{n<\omega} \cup\{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n, i}$ for $n<\omega$ and $i<f(n)$
- F has to be contained in some P_{n}

\mathcal{P} IS NOT σ-BOUNDED CC

- for $n<\omega$ choose in $P_{n}(r(s, n))$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $s_{n, i} \geq{ }_{s} r(s, n)$ such that $s_{n, i} \in\left(F_{n, i}\right)^{d}$ for $n<\omega$ and $i<f(n)$
- $\left\{s_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite)
- $F=\left\{s_{n, i}\right\}_{n<\omega, i<f(n)} \cup\{r(s, n)\}_{n<\omega} \cup\{s\} \in \mathcal{P}$
- F is orthogonal with all $F_{n, i}$ for $n<\omega$ and $i<f(n)$
- F has to be contained in some P_{n}
- $f_{n}(s) \geq f(n)+1$, a contradiction

\mathcal{P} IS σ-FINITE CC

- \mathcal{P} is σ-finite cc.
- choose in the ordering \leq increasing $I(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that
$\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- put $I(s, k)=(I(s, k), r(s, k))$, the open interval with respect to the ordering \leq
- for any $F \in \mathcal{P}$ fix a $k(F)<\omega$ such that the $I(s, k(F))$ are mutually disjoint for $s \in F^{d}$
- $F=\dot{U}\left\{I(s, k(F)) \cap F: s \in F^{d}\right\} \dot{U} R(F)$, where $I(s, k(F)) \cap F$ is a converging sequence with limit s and $R(F)$ is a finite set of isolated points

\mathcal{P} IS σ-FINITE CC

- \mathcal{P} is σ-finite cc.
- choose in the ordering \leq increasing $l(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- put $I(s, k)=(I(s, k), r(s, k))$, the open interval with respect to the ordering \leq
- for any $F \in \mathcal{P}$ fix a $k(F)<\omega$ such that the $/(s, k(F))$ are mutually disjoint for $s \in F^{d}$
- $F=\bigcup\left\{I(s, k(F)) \cap F: s \in F^{d}\right\} \dot{U} R(F)$, where $I(s, k(F)) \cap F$ is a converging sequence with limit s and $R(F)$ is a finite set of isolated points

\mathcal{P} IS σ-FINITE CC

- \mathcal{P} is σ-finite cc.
- choose in the ordering \leq increasing $l(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- put $I(s, k)=(I(s, k), r(s, k))$, the open interval with respect to the ordering \leq
mutually disjoint for $s \in F^{d}$
- $F=\bigcup \backslash\left\{I(s, k(F)) \cap F: s \in F^{d}\right\} \cup R(F)$, where $l(s, k(F)) \cap F$ is a converging sequence with limit s and $R(F)$ is a finite set of isolated points

\mathcal{P} IS σ-FINITE CC

- \mathcal{P} is σ-finite cc.
- choose in the ordering \leq increasing $l(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that
$\sup \{I(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- put $I(s, k)=(I(s, k), r(s, k))$, the open interval with respect to the ordering \leq
- for any $F \in \mathcal{P}$ fix a $k(F)<\omega$ such that the $I(s, k(F))$ are mutually disjoint for $s \in F^{d}$
- $F=\bigcup\left\{I(s, k(F)) \cap F: s \in F^{d}\right\} \dot{U} R(F)$, where $I(s, k(F)) \cap F$ is a converging sequence with limit s and $R(F)$ is a finite set of isolated points
- \mathcal{P} is σ-finite cc.
- choose in the ordering \leq increasing $l(s, k)$ and decreasing $r(s, k)$ for $k<\omega$ such that $\sup \{l(s, k): k<\omega\}=s=\inf \{r(s, k): k<\omega\}$
- put $I(s, k)=(I(s, k), r(s, k))$, the open interval with respect to the ordering \leq
- for any $F \in \mathcal{P}$ fix a $k(F)<\omega$ such that the $I(s, k(F))$ are mutually disjoint for $s \in F^{d}$
- $F=\dot{\bigcup}\left\{I(s, k(F)) \cap F: s \in F^{d}\right\} \dot{\cup} R(F)$, where $I(s, k(F)) \cap F$ is a converging sequence with limit s and $R(F)$ is a finite set of isolated points

\mathcal{P} IS σ-FINITE CC

- $P_{k, n, m}=\left\{F \in \mathcal{P} \quad: \quad k(F)=k \&\left|F^{d}\right|=n \&|R(F)|=m\right\}$
- $\mathcal{P}=\bigcup_{k, n, m<\omega} P_{k, n, m}$
- all $P_{k, n, m}$ are finite-cc:
- by contradiction: $\mathcal{A}=\left\{F_{i}\right\}_{i<\omega} \subset P_{\bar{k}, \bar{n}, \bar{m}}$ is an infinite antichain for some fixed $\bar{k}, \bar{n}, \bar{m}$

\mathcal{P} IS σ-FINITE CC

- $P_{k, n, m}=\left\{F \in \mathcal{P} \quad: \quad k(F)=k \&\left|F^{d}\right|=n \&|R(F)|=m\right\}$
- $\mathcal{P}=\bigcup_{k, n, m<\omega} P_{k, n, m}$
- all $P_{k, n, m}$ are finite-cc:
- by contradiction: $\mathcal{A}=\left\{F_{i}\right\}_{i<\omega} \subset P_{\bar{k}, \bar{n}, \bar{m}}$ is an infinite antichain for some fixed $\bar{k}, \bar{n}, \bar{m}$
- $P_{k, n, m}=\left\{F \in \mathcal{P} \quad: \quad k(F)=k \&\left|F^{d}\right|=n \&|R(F)|=m\right\}$
- $\mathcal{P}=\bigcup_{k, n, m<\omega} P_{k, n, m}$
- all $P_{k, n, m}$ are finite-cc:
- by contradiction: $\mathcal{A}=\left\{F_{i}\right\}_{i<\omega} \subset P_{\bar{k}, \bar{n}, \bar{m}}$ is an infinite antichain for some fixed $\bar{k}, \bar{n}, \bar{m}$
- $P_{k, n, m}=\left\{F \in \mathcal{P} \quad: \quad k(F)=k \&\left|F^{d}\right|=n \&|R(F)|=m\right\}$
- $\mathcal{P}=\bigcup_{k, n, m<\omega} P_{k, n, m}$
- all $P_{k, n, m}$ are finite-cc:
- by contradiction: $\mathcal{A}=\left\{F_{i}\right\}_{i<\omega} \subset P_{\bar{k}, \bar{n}, \bar{m}}$ is an infinite antichain for some fixed $\bar{k}, \bar{n}, \bar{m}$

\mathcal{P} IS σ-FINITE CC

- Let $\left(F_{i}\right)^{d}=\left\{s_{i}^{n}\right\}_{n<\bar{n}}$ and $R\left(F_{i}\right)=\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ be increasingly enumerated and put $F_{i}^{n}=F \cap I\left(s_{i}^{n}, \bar{k}\right) \backslash\left\{s_{i}^{n}\right\}$.
- $F_{i} \backslash\left(F_{i}\right)^{d}=\bigcup_{n<\bar{n}} F_{i}^{n} \cup\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ is the set of isolated points of F_{i}
- wlog $n<\bar{n}$ either all $s_{i}^{n \prime}$ s are equal or are pairwise different
- for any $m<\bar{m}$ either all $r_{i}^{m \prime}$ s are equal or are pairwise different

\mathcal{P} IS σ-FINITE CC

- Let $\left(F_{i}\right)^{d}=\left\{s_{i}^{n}\right\}_{n<\bar{n}}$ and $R\left(F_{i}\right)=\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ be increasingly enumerated and put $F_{i}^{n}=F \cap I\left(s_{i}^{n}, \bar{k}\right) \backslash\left\{s_{i}^{n}\right\}$.
- $F_{i} \backslash\left(F_{i}\right)^{d}=\bigcup_{n<\bar{n}} F_{i}^{n} \cup\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ is the set of isolated points of F_{i}
- wlog $n<\bar{n}$ either all s_{i}^{n} 's are equal or are pairwise different
- for any $m<\bar{m}$ either all r_{i}^{m} 's are equal or are pairwise different

\mathcal{P} IS σ-FINITE CC

- Let $\left(F_{i}\right)^{d}=\left\{s_{i}^{n}\right\}_{n<\bar{n}}$ and $R\left(F_{i}\right)=\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ be increasingly enumerated and put $F_{i}^{n}=F \cap I\left(s_{i}^{n}, \bar{k}\right) \backslash\left\{s_{i}^{n}\right\}$.
- $F_{i} \backslash\left(F_{i}\right)^{d}=\bigcup_{n<\bar{n}} F_{i}^{n} \cup\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ is the set of isolated points of F_{i}
- wlog $n<\bar{n}$ either all s_{i}^{n} 's are equal or are pairwise different
- for any $m<\bar{m}$ either all $r_{i}^{m \prime}$ s are equal or are pairwise different

\mathcal{P} IS σ-FINITE CC

- Let $\left(F_{i}\right)^{d}=\left\{s_{i}^{n}\right\}_{n<\bar{n}}$ and $R\left(F_{i}\right)=\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ be increasingly enumerated and put $F_{i}^{n}=F \cap I\left(s_{i}^{n}, \bar{k}\right) \backslash\left\{s_{i}^{n}\right\}$.
- $F_{i} \backslash\left(F_{i}\right)^{d}=\bigcup_{n<\bar{n}} F_{i}^{n} \cup\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ is the set of isolated points of F_{i}
- wlog $n<\bar{n}$ either all s_{i}^{n} 's are equal or are pairwise different
- for any $m<\bar{m}$ either all r_{i}^{m} 's are equal or are pairwise different

\mathcal{P} IS σ-FINITE CC

We say that $\{i, j\} \in[\omega]^{2}, i<j$, has colour

$$
\begin{array}{ll}
\left(1, n, n^{\prime}, l\right) & \text { if } s_{i}^{n} \in F_{j}^{n^{\prime}} \& s_{i}^{n}<s_{j}^{n^{\prime}} \\
\left(1, n, n^{\prime}, r\right) & \text { if } s_{i}^{n} \in F_{j}^{n^{\prime}} \& s_{i}^{n}>s_{j}^{n^{\prime}} \\
(2, n, m) & \text { if } s_{i}^{n}=r_{j}^{m} \\
\left(3, n, n^{\prime}\right) & \text { if } s_{j}^{n} \in F_{i}^{n^{\prime}} \\
(4, n, m) & \text { if } s_{j}^{n}=r_{i}^{m}
\end{array}
$$

for $n, n^{\prime}<\bar{n}$ and $m<\bar{m}$.

\mathcal{P} IS σ-FINITE CC

- for any $\{i, j\} \in[\omega]^{2}$ there is a point which is isolated in F_{i} and not isolated in F_{j} or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.
- for any $\{i, j\} \in[\omega]^{2}$ there is a point which is isolated in F_{i} and not isolated in F_{j} or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

\mathcal{P} IS σ-FINITE CC

- for any $\{i, j\} \in[\omega]^{2}$ there is a point which is isolated in F_{i} and not isolated in F_{j} or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.
- for any $\{i, j\} \in[\omega]^{2}$ there is a point which is isolated in F_{i} and not isolated in F_{j} or vice versa
- any pair $\{i, j\}$ obtains at least one colour
- Ramsey's theorem: $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ infinite homogeneous in one colour
- Derive a contradiction for each colour.

Outlook

- Assuming Martin's axiom, the above constructed example for an Aronshajn tree is even σ-bounded cc.
- Is it true that under this assumption the notions σ-bounded cc and σ-finite cc coinside?

Outlook

- Assuming Martin's axiom, the above constructed example for an Aronshajn tree is even σ-bounded cc.
- Is it true that under this assumption the notions σ-bounded cc and σ-finite cc coinside?

References

(i. B. Balcar, T. Pazák and E.Thümmel

On Todorcevic orderings
in preparation.
Horn, A. and Tarski, A.
Measures in Boolean algebras
Trans. Amer. Math. Soc., 64:467-497, 1948.
R. Todorčević

Two examples of Borel partially ordered sets with the countable chain condition
Proc.Amer.Math.Soc., 112(4):1125-1128, 1991.

